Skip to Content

Законы сохранения в механике

  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.


Закон сохранения импульса. Реактивное движение

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.  



Механическая работа и мощность

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Работой A, совершаемой постоянной силой  Механическая работа и мощность называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы  Механическая работа и мощность и перемещения  Механическая работа и мощность (рис. 1.18.1):



Кинетическая и потенциальная энергии

Если тело некоторой массы m двигалось под действием приложенных сил и его скорость изменилась от  Кинетическая и потенциальная энергии до  Кинетическая и потенциальная энергии то силы совершили определенную работу A. Работа всех приложенных сил равна работе равнодействующей силы (см. рис. 1.19.1).

Работа равнодействующей силы. 1

Рисунок 1.19.1. Работа равнодействующей силы.  Кинетическая и потенциальная энергии
            . A = F1s cos α1 + F2s cos α2 = F1ss + F2ss = Fрss = Fрs cos α.



Закон сохранения механической энергии

Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только силами тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком:

A = –(Ep2 – Ep1).

  По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел (см. §1.19):

A = Ek2 – Ek1.

  Следовательно

Ek2 – Ek1 = –(Ep2 – Ep1) или

 



Упругие и неупругие соударения

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда неизвестны действующие силы. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

С ударным взаимодействием тел нередко приходится иметь дело в обыденной жизни, в технике и в физике (особенно в физике атома и элементарных частиц). В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.



Элементы гидро- и аэродинамики

Движение жидкостей или газов представляет собой сложное явление. Для его описания используются различные упрощающие предположения (модели). В простейшей модели жидкость (или газ) предполагаются несжимаемыми и идеальными (то есть без внутреннего трения между движущимися слоями). При движении идеальной жидкости не происходит превращения механической энергии во внутреннюю, поэтому выполняется закон сохранения механической энергии.

Следствием этого закона для стационарного потока идеальной и несжимаемой жидкости является уравнение Бернулли (1738 г.). Стационарным принято называть такой поток жидкости, в котором не образуются вихри. В стационарном потоке частицы жидкости перемещаются по неизменным во времени траекториям, которые называются линиями тока. Опыт показывает, что стационарные потоки возникают только при достаточно малых скоростях движения жидкости. Рассмотрим стационарное движение идеальной несжимаемой жидкости по трубе переменного сечения (рис. 1.22.1). Различные части трубы могут находиться на разных высотах.



Вращение твердого тела

Для кинематического описания вращения твердого тела удобно использовать угловые величины: угловое перемещение Δφ, угловую скорость ω

 Вращение твердого тела

и угловое ускорение ε

 Вращение твердого тела

  В этих формулах углы выражаются в радианах. При вращении твердого тела относительно неподвижной оси все его точки движутся с одинаковыми угловыми скоростями и одинаковыми угловыми ускорениями. За положительное направление вращения обычно принимают направление против часовой стрелки.



Законы Кеплера

В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами. Очень непросто наблюдать гравитационное взаимодействие и между различными окружающими нас телами, даже если их массы составляют многие тысячи килограмм. Однако именно гравитация определяет поведение «больших» объектов, таких, как планеты, кометы и звезды, именно гравитация удерживает всех нас на Земле. Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства. Закономерности движения планет с давних пор привлекали внимание людей. Изучение движения планет и строения Солнечной системы и привело к созданию теории гравитации – открытию закона всемирного тяготения. С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Первая попытка создания модели Вселенной была предпринята Птолемеем (~ 140 г.). В центре мироздания Птолемей поместил Землю, вокруг которой по большим и малым кругам, как в хороводе, двигались планеты и звезды.

RSS-материал