Skip to Content

Постоянный электрический ток

  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.


Правила Кирхгофа для разветвленных цепей

Для упрощения расчетов сложных электрических цепей, содержащих неоднородные участки, используются правила Кирхгофа, которые являются обобщением закона Ома на случай разветвленных цепей. В разветвленных цепях можно выделить узловые точки (узлы), в которых сходятся не менее трех проводников (рис. 4.10.1). Токи, втекающие в узел, принято считать положительными; токи, вытекающие из узла – отрицательными.

Узел электрической цепи 1
Рисунок 4.10.1. Узел электрической цепи. I1, I2 > 0; I3, I4 < 0

В узлах цепи постоянного тока не может происходить накопление зарядов. Отсюда следует первое правило Кирхгофа: Алгебраическая сумма сил токов для каждого узла в разветвленной цепи равна нулю:



Работа и мощность тока

При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = IΔt. Электрическое поле на выделенном учестке совершает работу

ΔA = (φ1 – φ2)Δq = Δφ12IΔt = UIΔt,

где U = Δφ12 – напряжение. Эту работу называют работой электрического тока.  Если обе части формулы

RI = U,

выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение



Электрический ток в металлах

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты принадлежат русским физикам Л. И. Мандельштаму и Н. Д. Папалекси (1913 г.). В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением электронов. Схема опыта Толмена и Стюарта показана на рис. 4.12.1. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.



Электрический ток в полупроводниках

По значению удельного электрического сопротивления полупроводники занимают промежуточное место между хорошими проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры. Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает (см. рис. 4.12.4). У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами (рис. 4.13.1).



Электронно-дырочный переход. Транзистор

В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти полностью вытеснили электровакуумные приборы. В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или n–p-переход) – это область контакта двух полупроводников с разными типами проводимости. В полупроводнике n-типа основными носителями свободного заряда являются электроны; их концентрация значительно превышает концентрацию дырок (nn >> np). В полупроводнике p-типа основными носитялеми являются дырки (np >> nn).

При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу (рис. 4.14.1).



Электрический ток в электролитах

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза. Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией. Например, хлорид меди CuCl2 диссоциирует в водном растворе на ионы меди и хлора:



Электрический ток. Закон Ома

Если изолированный проводник поместить в электрическое поле  Электрический ток. Закон Ома
то на свободные заряды q в проводнике будет действовать сила  Электрический ток. Закон Ома
В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, не скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника равно нулю (см. § 4.5). Однако, в проводниках может при определенных условиях возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда.

Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле. Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда Δq, переносимого через поперечное сечение проводника (рис. 4.8.1) за интервал времени Δt, к этому интервалу времени:

RSS-материал