Skip to Content

Основы специальной теории относительности

  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
  • strict warning: Only variables should be passed by reference in /var/www/admin/www/fizika.ayp.ru/themes/zeropoint/template.php on line 343.
 

Постулаты СТО

Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями (υ << c). В нерелятивистской физике принималось как очевидный факт существование единого мирового времени t, одинакового во всех системах отсчета.

В основе классической механики лежит механический принцип относительности (или принцип относительности Галилея): законы динамики одинаковы во всех инерциальных системах отсчета. Этот принцип означает, что законы динамики инвариантны (то есть неизменны) относительно преобразований Галилея, которые позволяют вычислить координаты движущегося тела в одной инерциальной системе (K), если заданы координаты этого тела в другой инерциальной системе (K'). В частном случае, когда система K' движется со скоростью υ вдоль положительного направления оси x системы K (рис. 7.1.1), преобразования Галилея имеют вид:



Относительность промежутков времени

При выполнении любых физических измерений исключительную роль играют пространственно-временные соотношения между событиями. В СТО событие определяется как физическое явление, происходящее в какой-либо точке пространства в некоторый момент времени в избранной системе отсчета. Таким образом, чтобы полностью охарактеризовать событие, требуется не только выяснить его физическое содержание, но и определить его место и время. Для этого необходимо использовать процедуры измерения расстояний и промежутков времени. Эйнштейн показал, что эти процедуры нуждаются в строгом определении. Для того чтобы в выбранной системе отсчета выполнять измерения промежутка времени между двумя событиями (например, началом и концом какого-либо процесса), происходящими в одной и той же точке пространства, достаточно иметь эталонные часы. Наибольшей точностью в настоящее время обладают часы, основанные на использовании собственных колебаний молекул аммиака (молекулярные часы) или атомов цезия (атомные часы).



Относительность расстояний

Пусть твердый стержень покоится в системе отсчета K', движущейся со скоростью υ относительно системы отсчета K (рис. 7.3.1). Стержень ориентирован параллельно оси x'. Его длина, измеренная с помощью эталонной линейки в системе K', равна l0. Ее называют собственной длиной. Какой будет длина этого стержня, измеренная наблюдателем в системе K? Для ответа на этот вопрос необходимо дать определения процедуры измерения длины движущегося стержня. Под длиной l стержня в системе K, относительно которой стержень движется, понимают расстояние между координатами концов стержня, зафиксированными одновременно по часам этой системы. Если известна скорость системы K' относительно K, то измерение длины движущегося стержня можно свести к измерению времени: длина l движущегося со скоростью υ стержня равна произведению υτ0, где τ0 – интервал времени по часам в системе K между прохождением начала стержня и его конца мимо какой-нибудь неподвижной точки (например, точки A) в системе K (рис. 7.3.1). Поскольку в системе K оба события (прохождение начала и конца стержня мимо фиксированной точки A) происходят в одной точке, то промежуток времени τ0 в системе K является собственным временем. Итак, длина l движущегося стержня равна l = υτ0.



Преобразования Лоренца

Классические преобразования Галилея несовместимы с постулатами СТО и, следовательно, должны быть заменены другими преобразованиями. Эти новые преобразования должны установить связь между координатами (x, y, z) и моментом времени t события, наблюдаемого в системе отсчета K, и координатами (x', y', z') и моментом времени t' этого же события, наблюдаемого в системе отсчета K'. Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K' движется относительно K со скоростью υ вдоль оси x, преобразования Лоренца имеют вид:



Элементы релятивисткой динамики

Принцип относительности Эйнштейна утверждает инвариантность всех законов природы по отношению к переходу от одной инерциальной системе отсчета к другой. Это значит, что все уравнения, описывающие законы природы, должны быть инвариантны относительно преобразований Лоренца. К моменту создания СТО теория, удовлетворяющая этому условию, уже существовала – это электродинамика Максвелла. Однако уравнения классической механики Ньютона оказались неинвариантными относительно преобразований Лоренца, и поэтому СТО потребовала пересмотра и уточнения законов механики. В основу такого пересмотра Эйнштейн положил требования выполнимости закона сохранения импульса и закона сохранения энергии в замкнутых системах. Для того, чтобы закон сохранения импульса выполнялся во всех инерциальных системах отсчета, оказалось необходимым изменить определение импульса тела. Вместо классического импульса  Элементы релятивисткой динамики
в СТО релятивистский импульс  Элементы релятивисткой динамики
тела с массой m, движущегося со скоростью  Элементы релятивисткой динамики
</p><!-- google_ad_section_end --><div class=Читать далее

RSS-материал