Skip to Content

Энергия связи ядер



Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов. Силы, удерживающие нуклоны в ядре, называются ядерными.

Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия – так называемого сильного взаимодействия. Ядерные силы примерно в 100 раз превосходят электростатические силы и на десятки порядков превосходят силы гравитационного взаимодействия нуклонов. Важной особенностью ядерных сил является их короткодействующий характер. Ядерные силы заметно проявляются, как показали опыты Резерфорда по рассеянию α-частиц, лишь на расстояниях порядка размеров ядра (10–12–10–13 см). На больших расстояниях проявляется действие сравнительно медленно убывающих кулоновских сил. На основании опытных данных можно заключить, что протоны и нейтроны в ядре ведут себя одинаково в отношении сильного взаимодействия, то есть ядерные силы не зависят от наличия или отсутствия у частиц электрического заряда. Важнейшую роль в ядерной физике играет понятие энергии связи ядра.

Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц. Энергию связи любого ядра можно определить с помощью точного измерения его массы. В настоящее время физики научились измерять массы частиц – электронов, протонов, нейтронов, ядер и др. – с очень высокой точностью. Эти измерения показывают, что масса любого ядра Mя всегда меньше суммы масс входящих в его состав протонов и нейтронов:

Mя < Zmp + Nmn.

  Разность масс

ΔM = Zmp + Nmn – Mя.

называется дефектом массы.  По дефекту массы можно определить с помощью формулы Эйнштейна E = mc2 энергию, выделившуюся при образовании данного ядра, то есть энергию связи ядра Eсв:

Eсв = ΔMc2 = (Zmp + Nmn – Mя)c2.

  Эта энергия выделяется при образовании ядра в виде излучения γ-квантов. Рассчитаем в качестве примера энергию связи ядра гелия  Энергия связи ядер
, в состав которого входят два протона и два нейтрона. Масса ядра гелия Mя = 4,00260 а. е. м. Сумма масс двух протонов и двух нейтронов составляет 2mp + 2mn = 4, 03298 а. е. м. Следовательно, дефект массы ядра гелия равен ΔM = 0,03038 а. е. м. Расчет по формуле Eсв = ΔMc2 приводит к следующему значению энергии связи ядра  Энергия связи ядер
: Eсв = 28,3 МэВ. Это огромная величина. Образование всего 1 г гелия сопровождается выделением энергии порядка 1012 Дж. Примерно такая же энергия выделяется при сгорании почти целого вагона каменного угля. Энергия связи ядра на много порядков превышает энергию связи электронов с атомом. Для атома водорода  Энергия связи ядер
например, энергия ионизации равна 13,6 эВ. В таблицах принято указывать удельную энергию связи, то есть энергию связи на один нуклон. Для ядра гелия удельная энергия связи приблизительно равна 7,1 МэВ/нуклон. На рис. 9.6.1 приведен график зависимости удельной энергии связи от массового числа A. Как видно из графика, удельная энергия связи нуклонов у разных атомных ядер неодинакова. Для легких ядер удельная энергия связи сначала круто возрастает от 1,1 МэВ/нуклон у дейтерия  Энергия связи ядер
до 7,1 МэВ/нуклон у гелия  Энергия связи ядер
. Затем, претерпев ряд скачков, удельная энергия медленно возрастает до максимальной величины 8,7 МэВ/нуклон у элементов с массовым числом A = 50–60, а потом сравнительно медленно уменьшается у тяжелых элементов. Например, у урана  Энергия связи ядер
она составляет 7,6 МэВ/нуклон.

Удельная энергия связи ядер. 1
Рисунок 9.6.1. Удельная энергия связи ядер.

Уменьшение удельной энергии связи при переходе к тяжелым элементам объясняется увеличением энергии кулоновского отталкивания протонов. В тяжелых ядрах связь между нуклонами ослабевает, а сами ядра становятся менее прочными. В случае стабильных легких ядер, где роль кулоновского взаимодействия невелика, числа протонов и нейтронов Z и N оказываются одинаковыми ( Энергия связи ядер
,  Энергия связи ядер
,  Энергия связи ядер
). Под действием ядерных сил как бы образуются протон-нейтронные пары. Но у тяжелых ядер, содержащих большое число протонов, из-за возрастания энергии кулоновского отталкивания протонов для обеспечения устойчивости требуются дополнительные нейтроны. На рис. 9.6.2 приведена диаграмма, показывающая числа протонов и нейтронов в стабильных ядрах. У ядер, следующих за висмутом (Z > 83), из-за большого числа протонов полная стабильность оказывается вообще невозможной.

Числа протонов и нейтронов 2
Рисунок 9.6.2. Числа протонов и нейтронов в стабильных ядрах.

Из рис. 9.6.1 видно, что наиболее устойчивыми с энергетической точки зрения являются ядра элементов средней части таблицы Менделеева. Это означает, что существуют две возможности получения положительного энергетического выхода при ядерных превращениях: 1) деление тяжелых ядер на более легкие; 2) слияние легких ядер в более тяжелые. В обоих этих процессах выделяется огромное количество энергии. В настоящее время оба процесса осуществлены практически: реакции деления и термоядерные реакции. Выполним некоторые оценки. Пусть, например, ядро урана  Энергия связи ядер
делится на два одинаковых ядра с массовыми числами 119. У этих ядер, как видно из рис. 9.6.1, удельная энергия связи порядка 8,5 МэВ/нуклон. Удельная энергия связи ядра урана 7,6 МэВ/нуклон. Следовательно, при делении ядра урана выделяется энергия, равная 0,9 МэВ/нуклон или более 200МэВ на один атом урана. Рассмотрим теперь другой процесс. Пусть при некоторых условиях два ядра дейтерия  Энергия связи ядер
сливаются в одно ядро гелия  Энергия связи ядер
. Удельная энергия связи ядер дейтерия равна 1,1 МэВ/нуклон, а удельная энергия связи ядра гелия равна 7,1 МэВ/нуклон. Следовательно, при синтезе одного ядра гелия из двух ядер дейтерия выделится энергия, равная 6 МэВ/нуклон или 24 МэВ на атом гелия. Следует обратить внимание на то, что синтез легких ядер сопровождается примерно в 6 раз большим выделением энергии на один нуклон по сравнению с делением тяжелых ядер.


Комментарии

Сколько не ищи, что такое

Сколько не ищи, что такое ядерные силы, ни где не найдёш ответа на этот вопрос, т. е. нет ответа на то как они возникают. Найденый мной способ образования протона и нейтрона,показывающий, что они образовались попланетарной схемо, т. е. вокруг гравитационного центра стянутых силовых лини поля вращается позитрон у протона или электронно-позитронная пара у нейтрона. Но так как позитрон и протон имеют несколько степеней свободы вращения, то вокруг гравитационного центра образуется сфера с тодшиной равной диаметру позитрона. Когда начинают сближать два протона то их можно сблизить только так, что они перекроют толшину сферы. В таком случае позотрон одного протона может переходить на орбиту второго протона, а позитрон второго протона переходить на орбиту первого протона, эта зона становиться общей для двух пртонов и энергия этой зоны так же становится общей, что и определяет дефект масс. В силу того, что позитрон жёстко связан с силовыми гравитационными линиями гравитационного центрапротона, эти протоны тяжело разорвать и тяжело сблизить. Поэтому плотность атомного ядра не зависит от количества в нем нуклонов. А ядерные силы являются силами при взамодействии электромагнитной энергии и гравитационной энергии поля при образовании электрона и позитрона. Более детально об этом можно познакомиться в моей работе по
"Физика образования элементарных частиц".

Не совсем понял.Человек хотел

Не совсем понял.Человек хотел сказать,что ядерное взаимодействие-частный случай гравитационного?А электро взаимодействие не учитывал,хотя,как сказано в статье его действие намного весомей.Математика никак не совпадет,я думаю.