Skip to Content

Работа и мощность тока



При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = IΔt. Электрическое поле на выделенном учестке совершает работу

ΔA = (φ1 – φ2)Δq = Δφ12IΔt = UIΔt,

где U = Δφ12 – напряжение. Эту работу называют работой электрического тока.  Если обе части формулы

RI = U,

выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение

RI2Δt = UIΔt = ΔA.

  Это соотношение выражает закон сохранения энергии для однородного участка цепи. Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.

ΔQ = ΔA = RI2Δt.

  Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:

 Работа и мощность тока

  Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт). Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой Eds и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. Закон Ома для полной цепи записывается в виде

(R + r)I = Eds.

  Умножив обе части этой формулы на Δq = IΔt, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:

RI2Δt + rI2Δt = EdsIΔt = ΔAст.

  Первый член в левой части ΔQ = RI2Δt – тепло, выделяющееся на внешнем участке цепи за время Δt, второй член ΔQист = rI2Δt – тепло, выделяющееся внутри источника за то же время. Выражение EdsIΔt равно работе сторонних сил ΔAст, действующих внутри источника. При протекании электрического тока по замкнутой цепи работа сторонних сил ΔAст преобразуется в тепло, выделяющееся во внешней цепи (ΔQ) и внутри источника (ΔQист).

ΔQ + ΔQист = ΔAст = EdsIΔt
.

  Следует обратить внимание, что в это соотношение не входит работа электрического поля. При протекании тока по замкнутой цепи электрическое поле работы не совершает; поэтому тепло производится одними только сторонними силами, действующими внутри источника. Роль электрического поля сводится к перераспределению тепла между различными участками цепи. Внешняя цепь может представлять собой не только проводник с сопротивлением R, но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под R нужно понимать эквивалентное сопротивление нагрузки. Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, на и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение. Полная мощность источника, то есть работа, совершаемая сторонними силами за единицу времени, равна

 Работа и мощность тока

Во внешней цепи выделяется мощность

 Работа и мощность тока

Отношение  Работа и мощность тока
равное

 Работа и мощность тока

называется коэффициентом полезного действия источника.  На рис. 4.11.1 графически представлены зависимости мощности источника Pист , полезной мощности P, выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи I для источника с ЭДС, равной Eds, и внутренним сопротивлением r. Ток в цепи может изменяться в пределах от I = 0 (при  Работа и мощность тока
) до  Работа и мощность тока
(при R = 0).

Зависимость мощности источника 1
Рисунок 4.11.1. Зависимость мощности источника Pист, мощности во внешней цепи P и КПД источника η от силы тока.

Из приведенных графиков видно, что максимальная мощность во внешней цепи Pmax , равная

 Работа и мощность тока

достигается при R = r. При этом ток в цепи

 Работа и мощность тока

а КПД источника равен 50 %. Максимальное значение КПД источника достигается при I → 0, то есть при R → ∞. В случае короткого замыкания полезная мощность P = 0 и вся мощность выделяется внутри источника, что может привести к его перегреву и разрушению. КПД источника при этом обращается в нуль.